Skip to main content

PragProWriMo begins

November is here and this not-so-young-anymore geek's heart has turned to writing. I'm taking up the challenge of PragProWriMo by committing (forcing, tricking...) myself to write every day. The target is eighty pages by the end of the month.

As someone who has routinely taken years to write an eight page scientific paper (only four pages really if you subtract the tables, figures and compulsory, gratuitous citations of the publications of those who you suspect might review your paper) eighty pages seems an imposing target.

Ah well grasshopper, the longest journey etc. etc.

My chosen geek book working title is Biological Models in Java. That's likely to change as the writing progresses of course... I can already see it wandering towards Mathematical Recreations in Java, Ruby, Groovy, Clojure, R and that other language (you know, the one with the clicking sounds).

Comments

Popular posts from this blog

Fitting an ellipse to point data

Some time ago I wrote an R function to fit an ellipse to point data, using an algorithm developed by Radim Halíř and Jan Flusser 1 in Matlab, and posted it to the r-help list . The implementation was a bit hacky, returning odd results for some data. A couple of days ago, an email arrived from John Minter asking for a pointer to the original code. I replied with a link and mentioned that I'd be interested to know if John made any improvements to the code. About ten minutes later, John emailed again with a much improved version ! Not only is it more reliable, but also more efficient. So with many thanks to John, here is the improved code: fit.ellipse <- function (x, y = NULL) { # from: # http://r.789695.n4.nabble.com/Fitting-a-half-ellipse-curve-tp2719037p2720560.html # # Least squares fitting of an ellipse to point data # using the algorithm described in: # Radim Halir & Jan Flusser. 1998. # Numerically stable direct least squares fitting of ellipses

Circle packing in R (again)

Back in 2010 I posted some R code for circle packing . Now, just five years later, I've ported the code to Rcpp and created a little package which you can find at GitHub . The main function is circleLayout which takes a set of overlapping circles and tries to find a non-overlapping arrangement for them. Here's an example: And here's the code: # Create some random circles, positioned within the central portion # of a bounding square, with smaller circles being more common than # larger ones. ncircles <- 200 limits <- c(-50, 50) inset <- diff(limits) / 3 rmax <- 20 xyr <- data.frame( x = runif(ncircles, min(limits) + inset, max(limits) - inset), y = runif(ncircles, min(limits) + inset, max(limits) - inset), r = rbeta(ncircles, 1, 10) * rmax) # Next, we use the `circleLayout` function to try to find a non-overlapping # arrangement, allowing the circles to occupy any part of the bounding square. # The returned value is a list with elements for

Graph-based circle packing

The previous two posts showed examples of a simple circle packing algorithm using the packcircles package (available from CRAN and GitHub ). The algorithm involved iterative pair-repulsion to jiggle the circles until (hopefully) a non-overlapping arrangement emerged. In this post we'll look an alternative approach. An algorithm to find an arrangement of circles satisfying a prior specification of circle sizes and tangencies was described by Collins and Stephenson in their 2003 paper in Computation Geometry Theory and Applications. A version of their algorithm was implemented in Python by David Eppstein as part of his PADS library (see CirclePack.py ). I've now ported David's version to R/Rcpp and included it in the packcircles package. In the figure below, the graph on the left represents the desired pattern of circle tangencies: e.g. circle 7 should touch all of, and only, circles 1, 2, 6 and 8. Circles 5, 7, 8 and 9 are internal , while the remaining circles are exter